UF [FLORIDA

loT Security and Privacy
Introduction to Amazon AWS loT

YIER JIN

UNIVERSITY OF FLORIDA

EMAIL: YIER.JIN@ECE.UFL.EDU

SLIDES ARE ADAPTED FROM PROF. XINWEN FU @ UCF/UMASS

1 Fall 2019 — EEL 5934 - IoT Security and Privacy

mailto:yier.jin@ece.ufl.edu

| UF [FLORIDA
Learning Outcomes

Upon completion of this unit:
= Students will be able to understand the architecture of Amazon AWS loT
= Students will be able to practice the use of AWS loT managing loT devices

= Students will be able to practice programming AWS loT

o | UF FLORIDA
Prerequisites and Module Time

Prerequisites

= Students should have taken classes on operating system and computer
architecture.

= Students must have taken crypto and know how public key crypto and symmetric
key crypto work.

= Students should have mastered programming Raspberry Pi.
= Students should know basic concepts of networking.

Module time
= Two-hour lecture

= Two-hour homework

UF [FLORIDA

Outline

Introduction

| UF F1LORIDA
Overview

Amazon AWS loT basically sets up a server such as a MQTT server so that
physical loT devices and applications can use the server to communicate with

each other

AWS loT goes beyond the communication through MQTT and provides other
Amazon services that process the data from loT devices, for example, storing
data via Amazon Simple Storage Service (S3).

AWS loT supports other communication protocol such as REST API (https)

Protocol Authentication Port

MQTT Client Certificate 8883

MQTT over AWS Signature 443

WebSocket Version 4

HTTP Client Certificate 8443

HTTP AWS Signature 443
Version 4

UF [FLORIDA

Current AWS Services

Applications

SDK AWS Mobile SDK, API Endpoints, Management Console
% Networking & Content - ,
@ Compute Q’ﬁB Internet of Things @% Developer Tools ol Dsliv::tca)rrymg onen L& i\rtlflmal Intelligence
ex
EC2 Storage &= Game Development
Offered Services EC2 Gontainer Service 63 ContactCenter & f;;nsozgr:tzi"v
Lightsail (7 Database ? Security, Identlty & Application Services Machine Learning
Elastic Beanstalk Compliance
Lambda . . o
Batch] Mobile Services &) Migration Management Tools
sl Analytics FJ Messaging Business Productivity 53 Desktop & App Streaming
Underlying]]]
Services Computing|| Storage || Networking || Analytics || Databases

AWS Infrastructure

UF [FLORIDA
AWS loT service
Beta out in August 2015
Use of standard protocols
SDK, APIs
Partnership with different industry sectors

Bridge to other AWS Services, such as email, SMS, data analytics

Bi-Directional / Long lived connections

UF [FLORIDA

Smart Transportation Smart Health Smart Agriculture

AWS loT

AWS loT Architecture & Ecosystem

UF [FLORIDA
AWS loT - Console Interactive Tutorial

L AWS loT x

« C' | @ https://console.aws.amazon.com/iot/home?region=us-east-1#/tutorial/help?step=5

Kyle Roche ~ N. Virginia v Support ~

Services v

AWS v

AWS 10!

[T

Resources | Tutorial | Help and details

Learn how AWS loT works with this interactive tutorial

Read and Set Device State with

Shadows
1. Device Gateway 2. Rules Engine 3. Rule Actions 4. Device Shadows 5. Build Solutions 6. Done
AWS loT makes it easy to build companion

applications that interact with your connected Things.

The example at the left shows a mobile application

- o

. - = that reflects the color of your light bulb. The mobile
DD it @, forward @ app never communicates directly to the light bulb.
it [, transform to [@2 Rather, the mabile app uses a REST API to read and
C set the state of the bulb's Device Shadow.

Try interacting with the bulb via this mobile app.

)
3
Xy

& - o
=]

Change Color

oEE |

Privacy Policy Terms of Use

@ Feedback (3 English

AWS loT

DEVICE SDK
Set of client libraries to
connect, authenticate and
exchange messages

UF [FLORIDA

AUTHENTICATION
AUTHORIZATION

Secure with mutual authentication
and encryption

(@ @) EW "y
N

RULES ENGINE

Transform messages
based on rules and route

3 party Services

\/ to AWS Services
DEVICE GATEWAY
Communicate with devices via
MQTT and HTTP

.f/--'-' S . <_______> [] ‘ _ {_]

.". _I i 1
E—— N

i APPLICATIONS

hY /*" DEVICE SHADOW

s Persistent thing state during

intermittent connections

DEVICE REGISTRY

Identity and Management of

your things e

AWS IoT API [“‘]

4

UF [FLORIDA
AWS loT Components

Message broker

= A secure relay between users (subscribers and publishers)
= Protocols: MQTT, HTTP REST interface

Rules engine

= Rules directing data to other AWS services such as Amazon S3, Amazon DynamoDB,
and AWS Lambda

Thing Registry (Device Registry)
= Virtual devices in the cloud, corresponding to physical things
= Up to three custom attributes for a thing.

= Association of certificates and MQTT client IDs with a thing

UF [FLORIDA
AWS loT Components (Cont’d)

Thing Shadows service

= Synchronization of states requested by users and at the physical devices (what if the
connection is down?)

Thing shadow

= A JSON document storing state information for a thing

Device gateway
= Entry point for physical devices into the cloud

Security and identity service
= Secure communication
= Secure storage of credentials

= |dentification, authentication and authorization

| UF [FLORIDA
Accessing AWS loT

AWS Command Line Interface (AWS CLI)
= Windows, Mac, and Linux
= Refer to he AWS Command Line Interface User Guide.

AWS SDKs

= Build your loT applications using language-specific APIs.
= Refer to AWS SDKs and Tools.

AWS loT API

= Libraries
= Refer to Actions in the AWS loT API Reference.

AWS loT Thing SDK for C

= For resource-constrained things, such as rocontrollers.

| UF FLORIDA
Closely Related AWS Services

Amazon Simple Storage Service (S3)

= Scalable storage Refer to Amazon S3.

Amazon DynamoDB
= NoSQL databases. Refer to Amazon DynamoDB.

Amazon Kinesis

= Real-time processing of streaming data. Refer to Amazon Kinesis.

AWS Lambda

= Custom code running on Amazon EC2. Refer to AWS Lambda.

Amazon Simple Notification Service (SNS)

= Notifications through email, SMS and others. Refer to Amazon SNS.

| UF FLORIDA
Outline

Device registry - thing, keys, certificate, policy

UF [FLORIDA

AWS loT Device Registry

- /;.

REGISTRY

Identity and Management of
your things

UF|FLORIDA
Get Started with AWS loT and Raspberry Pi

#1 Sign into AWS Management console from loT Portal

#2 Create a Raspberry Pi Thing
= A thing represents a physical device in AWS loT cloud

#3 Create, download and activate Certificate and keys

= A certificate is used to authenticate a physical device with AWS loT

#4 Create a policy

= A policy specifies what a physical device can do, such as subscribing or publishing to MQTT topics

#5 Attach the thing and the policy with the certificate

= Means the physical device (represented by the certificate) is not associated with the thing in AWS
loT and what the physical device can do

#6 Create a rule (optional)
#7 Connect Raspberry Pi to AWS loT

http://www.awsomeblog.com/amazon-web-services-iot/

UF [FLORIDA

AWS loT Device Registry - Example 1

ii AWS ~ Services v Xinwen Fu ¥ Oregon ¥ = Support ¥
Resources | MQTT Client | Tutorial | Settings | 1 notification

Detail

Resources ‘ + Create a resource

Name loT-motion-sensor

REST API endpoint https://A3VOQMFBV77HZl.iot.us-we
st-2.amazonaws.com/things/loT-moti
Y
on-sensor/shadow

Select all MQTT topic 'Saws/things/loT-motion-sensor/shad
All) 1/1things 1/1rules 1/1 certificates ow/update’
4 First Previous - Next Last (]
1/1 policies Last update 15 days ago ‘ = ‘
Attributes Receiving-Date: Jan-11-2016
_ : Product-Name: HC-SR501-Infrared-PI
loT-motion- loT-motion- abaedfc0489 save .
sensor sensor-Policy 1fe67afc108f R-Motion-Sensor
b01fb81d2e8 Seller: Great-Deal
ACTIVE ENABLED Linked certificates
<§@ 0 5 0O B O E@ 0O Shadow status
Shadow version

Shadow state

Create a rule Connect a device

UF [FLORIDA

AWS loT Device Registry - Example 2

..' AWS v Services v t v Xinwen Fu ¥ N. Virginia ¥ Support ¥

Resources | MQTT Client | Tutorial | Settings | 1 notification

Learn more Detail Up

Resou rces 4+ Create a resource ‘

Name Fu-MotionSensor

REST API endpoint https://A3VOQMFBV77HZl.iot.us-eas

Y t-1.amazonaws.com/things/Fu-Motio
nSensor/shadow
‘ Select all ‘ MQTT topic 'Saws/things/Fu-MotionSensor/shad
1/1 things 1/1rules 1/1 certificates ow/update’
—_ First Previous Next Last
1/1 policies Last update 6 hours ago
Attributes None
Fu-MotionSe 8810388864 FuSNS Linked certificates
nsor-Policy 6462435279
0a92cec5c4db
ACTIVE ENABLED Shadow status
Shadow version
Shadow state
e 0 § O & O 2 O
"reported":

"color": "

Create a rule Connect a device

| UF FLORIDA
Outline

Security and identity

UF [FLORIDA

AWS loT Security

AUTHENTICATION

UF [FLORIDA

Securing and Identifying Things:
Mutual Authentication through TLS

Server authentication

e Server sends its certificate.

* Then?

Client authentication, similar to ssh certificate based authentication

e Server stores a client’s certificate for later identification

 Server performs the challenge response protocol to verify that the client has the
private key

UF|FLORIDA
Security, Designed for Connected Devices

MQTT + Mutual Auth TLS AWS Auth + HTTPS
Server Auth TLS + Cert TLS + Cert
Client Auth TLS + Cert AWS Access Keys
Confidentiality TLS TLS
Protocol MQTT HTTP
|dentification AWS ARNs AWS ARNs
Authorization AWS Policy AWS Policy

Amazon Resource Names (ARNSs)

| UF FLORIDA
Outline

Device gateway — MQTT

UF [FLORIDA

AWS loT Device Gateway

DEVICE GATEWAY

mmmmmmmmmmmmmmmmmmmmmmm

UF [FLORIDA

AWS loT Device Gateway

*“color”: “red”

[j - -O1)

®E

9,
|

Topic Based Architecture
(lights/thing-2/color)

Highly scalable
device gateway

— 0 00 e

Standard Protocol Support:
= MQTT and HTTP

Publish/Subscribe Broker with Long-
lived bi-directional messages

= Clients (Devices and Apps) can receive

commands and control signals from the
cloud

Secure by Default

" Connect securely via X509 Certs and TLS
client mutual authentication

UF [FLORIDA

AWS loT Device Shadow

C <>EJ|2H

SHADOW

Persistent thing state during
intermittent connections

UF [FLORIDA

AWS loT Shadow Flow

1. Device Publishes Current State

> 3. App requests device’s current state
5. Device Shadow sync’s Y% 4. App requests change the =
g updiated state 7 e state
@) i ®) ‘ -
. . %ﬂ[ﬁ 7. Device Shadow confirms state
6. Device Publishes Curient State change

4

2. Persistent JSON Data Store

Device SDK

UF [FLORIDA

AWS loT Device Shadow Topics (MQTT)

Thing SDK (C'SDK; JS'SDK) Sensor Reported Desired Delta
makes it easy to build shadow LED1 RED VELLOW
i itv i i i LED1 = Yellow
functlonallty.mto a device sp it Y XoLY-57-4 | Xolyos7ed | tomr o e
can automatically synchronize
. . TEMP 83F 60F
the state with the device.

Reserved topics starting with $ (refer to topics)

UPDATE: Saws/things/{thingName}/shadow/update
DELTA: Saws/things/{thingName}/shadow/update/delta
GET: Saws/things/{thingName}/shadow/get

DELETE: Saws/things/{thingName}/shadow/delete

UF FLORIDA
Publish Using JSON

* JSON (JavaScript Object Notation)
* A lightweight data-interchange format

e Easy for humans to read and write

* Easy for machines to parse and generate.

* A thing can send its current state to the Thing Shadows service by sending an MQTT
message to the topic Saws/things/myLightBulb/shadow/update

{
"state": {
"reported": {
"color": "red"
}
}
}

UF FLORIDA
RESTful APl Accessing Shadow

curl is a tool to transfer data from or to a server, using one of the supported
protocols including HTTP and HTTPS

= Delete all data from a thing shadow by setting its state to null
curl -H "Content-Type: application/json" -X POST -d '{"state":null}' -k --cert ./a5aedfc048-
certificate.pem.crt --key ./a5aedfc048-private.pem.key https://A3VOQMFBV77HZl.iot.us-
west-2.amazonaws.com:8443/things/loT-motion-sensor/shadow

= curl -H "Content-Type: application/json" -X POST -d
"{"state":{"desired":{"motion":"0","time":"hello"}}}' -k --cert ./a5aedfc048-
certificate.pem.crt --key ./a5aedfc048-private.pem.key "https://A3VOQMFBV77HZl.iot.us-
west-2.amazonaws.com:8443/things/loT-motion-sensor/shadow"

= curl -H "Content-Type: application/json" -X POST -d
{"state":{"reported":{"motion":"0","time":"hello"}}}' -k --cert ./a5aedfc048-
certificate.pem.crt --key ./a5aedfc048-private.pem.key https://A3VOQMFBV77HZl.iot.us-
west-2.amazonaws.com:8443/things/loT-motion-sensor/shadow

| UF FLORIDA
Outline

Rules Engine

UF [FLORIDA

AWS loT Rules Engine

({<2D)

) Svv 4

RULES ENGINE
Transform messages based
on rules and route to AWS

Services

UF [FLORIDA

AWS loT Rules Engine Basics

=\
(@S2
\ sw,v/4
g “color”: “red”
K if [J turn to [@)
®)[E)]E
H R
= @)
Description @
* Gl T)
sQL Statement SELECT * FROM ‘things/thing-2/color” WHERE

color = ‘red’

Array of Actions

UF [FLORIDA

AWS loT Rules Engine Actions

O U@a
(@D O2
\/ AWS S

UF [FLORIDA

Rules - SNS

Learn more Detail Edit Edit actions

Name FuSNS
State Enabled

Description Send SMS when alerted
Query string SELECT * FROM '#'

Select all

First Previous Next Last .

Role name aws_jot sns

o SNS target arn:aws:sns: us-east-1:4402737

78302:Fu-SMS-Topic
ENABLED

% O

amazon

webservices Webinars

UF [FLORIDA

Rule - DynamoDB

Learn more Detail Edit Edit actions

Name save
State Enabled

Description save motion sensor data
Query string SELECT * FROM '#'

Select all

First Previous Next Last .

Role name aws_iot_motion_sensor_data

save

Table name motion_sensor

Hash key topic

ENABLED
Hash key value S{topic()}
Range key timestamp
E@ 0O Range key value S{timestamp()}

AWS loT SQL Reference

http://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-sql-reference.html

| UF FLORIDA
Outline

Pricing

o UF [FLORIDA
Pricing - Pay as You Go

-No minimum

-S5 per million messages published to, or delivered in US East (N.
Virginia), US West (Oregon), EU (Ireland)

-$8 per million in Asia Pacific (Tokyo)

-No fees for Rules, Shadows, Deliveries to other AWS Services

e N
Free Tier

250,000 Messages Per Month Free for first 12

Months
\ /

| UF FLORIDA
Outline

Example code with MQTT

UNIVERSITqu
#!/usr/bin/python3 UF ‘ FLORIDA

Example code: publish motion
#required libraries for mgtt and AWS IoT
rt sys sensor data to AWS loT

ssl
json
. paho.mgtt.client os mgtt

for motion sensor
- RPi.GPIO as GPIO
~ time
datetime - datetime

#called while client tries to establish connection with the server
- on_connect(mgttc, obj, flags, rc):

rc==0:
print ("Subscriber Connection status code: "+str(rc)+" | Connection status: successful")
mgttc.subscribe("$aws/things/IoT-motion-sensor/shadow/update/accepted”, qos=0)
i mgttc.publish("$aws/things/IoT-motion-sensor/shadow/update"”, '{"state":{"reported":{"color":"Fu"}}}')
rc==1:
print ("Subscriber Connection status code: "+str(rc)+" | Connection status: Connection refused")
message_json['state']['reported']['color'] == "RED"

#called when a topic is successfully subscribed to
- on_subscribe(mgttc, obj, mid, granted_qgos):
print("Subscribed: "+str(mid)+" "+str(granted_qos)+"data"+str(obj))

#called when a message is received by a topic
~ on_message(mgttc, obj, msg):
print("Received message from topic: "+msg.topic+" | QoS: "+str(msg.qos)+" | Data Received: "+str(msg.payload))

#creating a client with client-id=mgtt-test
mgttc = mgtt.Client(client_id="xinwenfu@")

mgttc.on_connect = on_connect
mgttc.on_subscribe = on_subscribe
mgttc.on_message = on_message

‘UNIVERSITY of
#Configure network encryption and authentication options. Enables SSL/TLS support. FLORIDA

#adding client-side certificates and enabling tlsvl.2 support as required by aws-iot service
mgttc.tls_set(ca_certs="/home/pi/fu/certs/VeriSign-Class3-Public-Primary-Certification-Authority-G5.pem",
certfile="/home/pi/fu/certs/a5aedfc@48-certificate.pem.crt”,
keyfile="/home/pi/fu/certs/a5aedfc@48-private.pem.key",
tls_version=ss1.PROTOCOL_TLSv1_2,
ciphers=)

#mgttc.tls_insecure_set(True)

#connecting to aws-account-specific-iot-endpoint
mgttc.connect("A3VOQMFBV77HZI .iot.us-west-2.amazonaws.com"”, port=8883)
#AWS IoT service hostname and portno

#automatically handles reconnecting
#mgttc.loop_forever()

start a new thread handling communication with AWS IoT
mgttc.loop_start()

sensor = 12
GPIO.setwarnings()
GPIO.setmode(GPIO.BOARD)
GPIO.setup(sensor,GPIO.IN)

Irc=0
. rc == 0:
i = GPIO.input(sensor)
print(i) # i = 1: Motion detected; i = @: No Motion
data={}

data['motion']=1

data['time']=datetime.now() .strftime("%Y/%m/%d ¥H:%M:%S")
payload = "{"state":{"reported":"+json.dumps(data)+"}}"
#json.dumps(data)

print(payload)

#the topic to publish to

#The names of these topics start with $aws/things/thingName/shadow."

msg_info = mqgttc.publish("$aws/things/IoT-motion-sensor/shadow/update”, payload, gos=1)
time.sleep(l)

KeyboardInterrupt:

GPIO.cleanup()

42

UF [FLORIDA
References

[1] Get started with AWS loT, 2017

[2] AWS loT developer guide, 2016

[3] Onur SALK, Amazon Web Services loT, November 02, 2015

[4] Get Started with AWS loT and Raspberry Pi, Oct. 18, 2015

[5] AWS January 2016 Webinar Series - Getting Started with AWS loT, Jan 26, 2016

[6] AWS Identity and Access Management User Guide, 2016

[7] paho-mqtt 1.1, 2016

[8] Introducing JSON, 2016

